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A METHOD FOR COMPUTING CHEMICAL -EQUILIBRIUM COMPOSITIONS 

O F  REACTING-GAS MIXTURES BY REDUCTION 

TO A SINGLE ITERATION EQUATION 

By Wayne D. Erickson, Jane T. Kemper, 
and Dennis 0. Allison 

Langley Research Center 

SUMMARY 

A method for computing the equilibrium chemical composition of a reacting gas  
mixture is presented wherein all the equilibrium and mass-balance equations are com- 
bined algebraically into one equation involving a single unknown. A comparison between 
this method and a widely used more general method shows that the unit computational 
speed of the present method can be as much as two orders  of magnitude faster. This 
great advantage in computational speed is achieved at the expense of generality. The 
present method for computing equilibrium chemical compositions should be useful 
when applied to systems of intermediate complexity and where a large number of com- 
putations a re  required. 

INTRODUCTION 

A number of methods have been developed f o r  computing the equilibrium chemical 
composition and thermodynamic properties of reacting gas  mixtures. 
employ various iteration schemes. Although the machine computation time required to 
obtain a single solution may be small, the machine computation time in flow-field prob- 
lems  that require a very large number of equilibrium composition calculations may be 
excessive. In that case,  a se r i e s  of empirical curve fits of the thermodynamic prop- 
e r t i e s  is sometimes used. 

These methods 

A study of three of the most widely used general methods for computing chemical- 
equilibrium compositions w a s  car r ied  out by Zeleznik and Gordon (ref. 1.) The study 
considered the methods of Brinkley (ref. 2), Huff, Gordon, and Morrel l  (ref. 3), and White, 
Johnson, and Dantzig (ref. 4) with regard to any computational advantage of one method 
over the other methods. The comparison showed that none of the methods indicated any 
significant computational advantage over the other two. 



The present work outlines a method for  computing the equilibrium chemical com- 
position wherein the complete set of equilibrium and mass-balance equations a re  reduced 
to one equation involving a single unknown. A comparison between the present method 
and the more general method of White will show that a great advantage in  computational 
speed is realized in  the present method. As will be shown, this advantage is achieved at 
the expense of generality. 

SYMBOLS 

mass  of kth element per  mass  of ith species ai, k 

- 
number of a toms of kth element per molecule of ith species ai, li 

4 nondimensional Helmholtz free energy of ith species - 
RT 

nondimensional Helmholtz free energy of reacting gas  mixture 

m a s s  ratio of kth element to the (k + 1)th element in the mixture, regard- bk, k+ 1 
less of chemical species in which they appear 

- 
total number of atomic weight units of 

m a s s  fraction of species i in mixture 

bk 

‘i 

c&n) nth approximation of c1 

indexed coefficients in equation (6) 

function defined by equation (6) 

derivative of F c (see eq. (8)) 

dl 

F(cl) 

F’( 9) ( 1) 

F: 

element k per mass  of mixture 

nondimensional Gibbs f r ee  energy of ith species b - 
RT 

F -(x1,x2,. . .xI) RT 
nondimensional Gibbs free energy of reacting gas mixture 
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AF; 9 

nondimensional standard-state free energy of formation of species i 
RT 

at temperature T 

i,I, j, J, k, K,Z, L integers 

Kp, j 
m 

N 

P 

R 

T 

Wi 

W 

xi 

- 
X 

Xi 

P 

t C  

tin 

tout 

tT 

equilibrium constant in t e r m s  of partial pressures  for reaction j 

unit computational time, time/case 

number of cases  computed per run 

pressure 

universal gas constant 

tem pe ratur e 

molecular weight of ith species 

molecular weight of mixture 

Moles of species i 
Mass  of mixture 

mole number of species i, 

Total moles of mixture 
M a s s  of mixture 

mole number of mixture, 

chemical symbol of species i where, for  example, in equation (4) 
XI = H, X2 = 0, X3 = Ha, etc. 

mass-balance quantity defined by equation (22) 

actual computational time (this time is exclusive of input and output times) 

input time 

output time 

total machine time 
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V. 
1, j 

I 
V. 
1, j 

P 

7. 
J 

Subscripts : 

i 

I 

j 

J 

k 

K 

I 

L 

stoichiometric coefficient of reactant species i in jth reaction 

stoichiometric coefficient of product species i in jth reaction 

density of mixture 

modified equilibrium constant defined by equation (5) 

ith species 

total number of species in mixture 

jth reaction 

total number of independent reactions that can be written for mixture 

kth element 

total number of elements in mixture 

power series index in equation (6) 

highest o rder  power in equation (6) 

EQUILIBRIUM COMPOSITION EQUATIONS 

This section is concerned with the development of a technique for computing the 
equilibrium chemical composition of a reacting mixture at a given temperature, density, 
and set of mass  restraints,  wherein the solution for  a single equation involving only one 
composition t e rm is obtained. The solution for all the remaining species then are found 
by direct substitution. The general equations for  an equilibrium reacting gas system 
involving an arbitrary number of species and chemical elements are presented, after 
which a specific set of equations are written for a reacting mixture of hydrogen and air. 

General Equations 

In an equilibrium reacting gas mixture containing I chemical species, which in 
turn are composed of K chemical elements, there  are J independent and simultaneous 
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chemical reactions that can be written, such that I = J + K. Application of 
vation of mass  for each of the kth chemical elements leads to  the following 

the conser- 
K equations: 

I 1 ai,kci 
(k=1,2,. . .K-1) (1) i= 1 - 

- bk,k+l I 

ai,k+lci 
i= 1 

and 

L c. = 1 
i= 1 

The quantity ai,k represents the total m a s s  of atoms of the kth element per  m a s s  of a 
is the corresponding quantity for  the ai, k+ 1 molecule of the ith chemical species, 

(k+l)th element, and bk,k+l is defined as the m a s s  ratio of the kth element to  the 
(k+l)th element in the mixture, regardless of the chemical species in which the element 
appears . 

There are also J 

which correspond to the 

equilibrium expressions which can be written as 

(j = 1,2,. . .J) 
J independent chemical reactions containing species Xi, 

( j  = 1,2,. . .J) 
i= 1 i= 1 

(3) 

(4) 

The quantity 
of T and p, 

T. in equation (3) is a modified equilibrium constant which is a function 
3 

( j  = 1,2,. . .J) (5) 

where K is the equilibrium constant in t e r m s  of partial pressures  for the jth reaction. P, j 
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Equations (l), (2), and (3) constitute I independent equations involving as many 
unknown ci. The present technique for computing the chemical composition at a speci- 
fied temperature, density, and mass  restraints (specific m a s s  restraints are reflected 

of equation (1)) first entails writing down the through ai,k, ai,k+19 and bk,k+l 
K equations suggested by equations (1) and (2). These K equations contain all 
I unknowns, namely, the m a s s  fractions ci. The J equilibrium equations given by 
equation (3) are then substituted into these K equations for the mass  constraints in  
order to reduce the I unknowns by J so that a modified set of K equations is 
obtained containing only K unknowns, for example, c1,c2,. . .CK. These resulting 
K equations are then combined algebraically in such a way as to obtain a single equation 
containing only one unknown, for example, cl, where c1 is the mass  fraction of an 
arbitrari ly chosen species 1. (See appendix for the details of the algebraic reduction.) 
This  single equation can be expressed as 

L 

F(c l )  = 2 d z c t =  0 

1 =O 

v. and T. 
J 

but are independent of the m a s s  fractions ci. It follows that the coefficients d2 can be 
computed once the temperature, density, and set of m a s s  constraints are imposed. The 
calculated values of dz can then be used in equation (6) along with the application of 
Newton's iteration scheme to find 

where the coefficients dz are functions of ai,k, ai,k+19 bk,k+19 V. i , j '  l,j9 

cl. 
Newton's iteration scheme for determining c1 can be written as 

where cl(n) is the nth approximation of c1 and the derivative of F c is ( 1) 

The iteration scheme indicated by equation (7) is repeated until the required accu- 
racy for c1 is achieved. Equation (6) indicates that a number of roots are possible 
for cl. However, the cor rec t  value of c1 must be within the range 0 5 c1 2 1. If a 
root outside t h i s  range is obtained through the iteration process, it is eliminated and a 
different initial choice of c1 is made to r e s t a r t  the iteration process. After a solution 
for c1 is found within the range 0 S c1 5 1 through equation (7), the mass  fractions 
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for  all the other species, 
mediate equations that lead to equation (6). 
for the general case but will be indicated for the specific example for a hydrogen-air 
model which follows.) Each value of the m a s s  fractions, 
make certain it falls in the range from 0 to  1. The sum of all the m a s s  fractions must 
also be unity. ci which satisfies these conditions. 

c2,c3,. . .cI, are found by direct substitution into the inter- 
(These intermediate equations are not shown 

~ 2 , ~ 3 , .  . .cI, is examined to 

There is only one set of values for 

Specific Equations for a Hydrogen-Air Gas Model 

The application of the present technique for computing the chemical composition is 
best illustrated by a specific example of intermediate complexity. Consider an equilib- 
rium system resulting from the combustion of pure hydrogen with air. Assume that air 
is a 4 to  1 molar mixture of N2 and O2 wherein the N2 is taken as inert. The following 
seven species (I = 7), H, 0, H2, 02, OH, H20, and N2 with species index numbers 
i = 1,2,. . .7, respectively, are assumed t o  appear in the system; the molecular weight of 
each of these species is taken to be 1, 16, 2, 32, 17, 18, and 28, respectively. These 
species a r e  composed of three elements (K = 3), H, 0, and N with element index numbers 
k = 1, 2, and 3, respectively. 
with k =  1 and k =  2 are, therefore, 

The two specific equations that result from equation (1) 

1 1 c l + c  + -  

c2 + c4 + -c5 + - 

3 17 ‘ 5 + G C 6  

16 8 192 
= b  

17 9 c6 

and 

16 8 c + C  + - - c  + - - c  
2 4 1 7 5  9 6  - 2 

- b2,3 = 7 
7. 

(9) 

where b is the arbitrary m a s s  ratio of hydrogen to  oxygen in the system and 
1 7 2  

b2,3 = 
addition to these two equations, equation (2) applied to  the present example leads to 

results from the assumption that air is a 4 to 1 molar ratio of N2 to  02. In 

In addition to these three equations, there are J = I - K = 4 independent equilib- 
rium expressions which result  from the following independent chemical reactions, 
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O H = O + H  (j = 3) 

H20  = 2H + 0 (3 = 4) 

Equation (3) then leads to the following equations where j has  been set equal to 1, 2, 
3, and 4, 

c5 = 177 c c 3 1 2  

c 6 =  9 r  c 2 c 
4 1  2 

(The arbi t rary inclusion of the factors  17 and 9 in equations (14) and (15) makes for a 
somewhat simpler set of values for d17 as will be shown. The only effect is to modify 
the relation between r. and K shown by equation (5).) The quantities r. in these 
equations are related to the equilibrium constants in t e r m s  of partial p ressures  K 
for each reaction through equation (5) and can be expressed explicitly as 

J P, j J 
P, j 

2pRT r1 = 
KP, 1 

where K (The factors  17 and 9 in equations (14) 
and (15) have been accounted for in  writing down equations (18) and (19). If these factors 

are functions of temperature alone. 
P, j 
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were not used, then in what follows, it would be necessary to  replace T~ by 1 7 ~ ~  and 

It follows then that for a given temperature, density, and m a s s  ratio of hydrogen to 
oxygen bl, 2, equations (9) to (15) constitute seven independent equations involving seven 
unknown quantities, c1,c2,. . .c7. Equations (10) and (11) are combined to  eliminate c7 
and equations (12) to (15) are then employed to  eliminate c3, c4, c5, and c6 to give 

74 by 974.) 

Equation (9) can also be reduced t o  contain only c1 and c2 by substitution of equa- 
tions (12) to (15) so  that 

where 

Zb1,2 

2b1,2 + 

P =  

Equation (21) rearranges to give an explicit expression for c2 in t e r m s  of c1 only, 

This explicit expression for c2  in t e r m s  of c1 is then substituted into equation (20) 
to  obtain a single equation that contains c1 only. With some rearrangement, this 
expression containing c1 only can be written as 

F(cl) = f d z c t  = 0 
2=0 

where the coefficients d are I 

2 
do = 72P 

dl = - ( 2 ~ ~  - T ~ ) P  



(244  d3 = ( 2 T 1 T 2  - TIT3 - 1 6 ~ ~ ~  - T4) + $558 4 - ~ ) T ~ T ~  

2 
3 4) 9” d4 = (71 2 T2 - T1T4 - 167 T - 247 T + -(3?p - 1)T4 

1 3  

d5 = -8 37 7 7 + T~ ( 1 3 4  ’) 
2 d6 = -87174 

A solution for c1 can be obtained by application of equation (7) (Newton’s i tera- 
tion scheme) which yields 

d 7 d&) 

cl(n+l) = cl(n) - I= 0 
6 1 Idzci-l(n) 

z= 1 

wherein cl(n) is the nth approximation for c1 and cl(n+l) is the next better approx- 
imation in this iteration scheme. The number of iterations required is, of course, 
dependent upon the accuracy desired. 

For this specific example in which it has  been assumed that air is a 4 to 1 molar 
mixture of Nz and 02, and the mass ratio of hydrogen to oxygen is denoted by b1,2, the 

possible range of c1 is 0 5 c1 5 . After a value of c1 in th i s  range has  been b1,2 
a 

obtained through equation (25) with the desired accuracy, the value of can be com- 
puted directly f rom equation (23). Equations (12) to (15) a r e  then employed to compute 
c3 to c6, respectively. The value of c7 is then computed by difference from equa- 
tion (11). It should be noted again that all the values of must each be within the 
range 0 5 c .  d 1. 

c2 

ci 
1 

The procedure for applying this technique to  other systems would be the same as 
indicated in this specific case. As the system becomes more involved with respect to the 
number of species and reactions, the order  of the series equivalent to equation (24) 
increases  and it becomes increasingly more tedious to determine the coefficients dl. 
This present technique is probably best suited to systems of intermediate complexity. 
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COMPARISON WITH OTHER METHODS 

The purpose of this section is to  compare the present method with other existing 
methods for computing the equilibrium chemical composition of reacting gas mixtures 
with particular regard for the speed of computation. As already mentioned, a study by 
Zeleznik and Gordon (ref. 1) has shown that none of the three most widely used general 
methods offer any significant computational advantages over the other. A comparison 
between only one of these methods and the present method is therefore all that is needed. 
The White method (ref. 4) which employs a free -energy minimization technique was 
selected for the purpose of making this comparison. The comparison to  be made here  is 
limited to determining the chemical composition at a given temperature and density for  
the two methods. It is recognized that solutions to  problems are often required when two 
other thermodynamic quantities are specified. Where the latter is desired, the present 
method could become a part  of an iteration scheme based on two thermodynamic quanti- 
ties. It is believed that the most time-consuming step in all such schemes is the deter-  
mination of the equilibrium composition; therefore, only the timing of this process will be 
considered. 

Free -Energy Minimization Technique 

The determination of the equilibrium chemical composition through the free-energy 
minimization technique requires  the standard free energy of formation AF& of each 
species in the mixture at the temperature of the mixture. The free energy of the mix- 
ture, which is a minimum at the equilibrium chemical composition, can be written as 

where xl,x2,. . .xI represent a set of I mole numbers, xi is defined as the moles of 
species i per gram of mixture, p is the total pressure expressed in atmospheres, and 

I 
z =  c x i  

i= 1 

The equilibrium chemical composition is determined when a set of mole numbers 
x1,x2,. . .xI produces a minimum value for  the free energy of the mixture 

F -(x1,x2,. . .xI) given by equation (26) and at the same time satisfies the following m a s s  
RT 
balance expressions: 
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- I c -  ai,kxi = b k 
i= 1 

(k = 1,2,. . .K) (28) 

where a. represents  the number of atoms of element k contained in a molecule of 
species i, and Ek is a constant equal to the total number of atomic weight units of 
element k per gram of mixture. Equation (26) when minimized within the limitations 
of equation (28) yields the chemical composition at a fixed T and p. Since the present 
method w a s  developed for a fixed T and p, and a comparison between the two methods 
is desired, equation (26) is rewritten in  t e rms  of T and p. The equation of state of the 
mixture can be expressed as 

1,k 

P = ~ ~ T = ~ Z R T  
W 

Substitution of equation (29) for the pressure into equation (26) yields 

+ loge p + loge(xi) + log, F 
& + X 2 , .  .XI) = 

i= 1 

wherein the units of R, where it is not a part of a nondimensional quantity, must be such 
that pressure takes on units of atmospheres. However, the appropriate quantity to  min- 

ra ther  &(x1,x2,. . .xI), the Helmholtz f ree  energy. The relationship between the 

imize for a fixed T and p is no longer -(x1,x2,. F . .xI), the Gibbs f r ee  energy, but 
RT 

F. 
Gibbs molar free energy of species i, 2 and the Helmholtz molar f ree  energy of 

species i, RT’ - is 
RT’ 

Ai 

Fi Ai 
-=-+I  
RT RT 

Therefore, the expression to be minimized to find the equilibrium composition for a 
fixed T and p becomes 

- RT( * x x  1’ 2’’ ‘XI) = P F t i  
xi RT 

i= 1 

Since a machine program based on the minimization of equation (26) at constant p 
and T was available from a previous study, a program was not developed to use equa- 
tion (32) at constant p and T directly. Instead, equation (26) was replaced by 
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equation (30) in the existing program and the input included fixed values of p and T. 
Since the existing program was set up for constant p, it follows that each iteration step 
is carr ied out for a constant pressure equal to that given by equation (29), but this pres-  
sure  is modified from one iteration step to the next in direct proportion to 2. As the 
result approaches the correct  solution, the pressure stabilizes. The computation time 
required for this solution w a s  found to be essentially the same as that required when a 
given temperature and pressure  were used directly in the program that utilized equa- 
tion (26). The numerical results were also the same. 

H 
OH 

H2° 

Input Quantities for Comparison 

The input quantities for both the present method and the free-energy minimization 
technique include T, p, and a set of values for the molar standard-state f ree  energy of 

formation of each species at  T. The free-energy method makes use of the quan- 

tity ' directly in equation (30) whereas the present method utilizes in com- 

puting equilibrium constants $,j which are required in equation (5) for  computing a set  

of values of 7 The relation between K and ' is 

A F ~ "  

RT 
A F ~ "  A F ~ "  

RT RT 

A F ~ "  

j *  P, j RT 

-0.46052 
-.52269 
-. 54802 

In addition to these common quantities, the direct  method requires  an initial approxima- 
tion for the mass  fraction of H, that is, cl;  whereas the free-energy method requires  
an initial approximation for a set of mole numbers of all species. This set of mole num- 
be r s  must, of course, be chosen to  be consistent with the mass  balance expressions 
given by equation (28). 

The temperature and density chosen for comparison are T = 4000' K and 
AF; 

' f rom reference 5 are 5 
p = 3.0 X 10- g/cc. At 4000' K the free-energy quantities 

RT 

Species 

N2 
O2 
H2 
0 

AF~" 9 

RT 

0 
0 
0 
-.39144 

~ 

AF; 1 RT) 
Species 
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A stoichiometric mixture of H2 and air, wherein air is assumed to be a 4 to 1 molar 
mixture of N2 to 02, is used to define the mass  balance. This definition requires  that 
the quantity b 
free-energy method, a suitable initial set of mole numbers is x: = 0.0270270, 

in  equation (22) be set equal to 1/8 for  the present method, and for the 
1 7  2 

2 
0 0 0  0 9 xHZO = 10- . This set  cor re-  = 0.0067568, xo = 0.0135135, and xo = xH = xoH = 

sponds to a 1:2:4 molar mixture of 02:H2:N2 in a reference state. Because the program 
for the free-energy minimization technique requires  initial nonzero values for  all species 
considered in the mixture, the reference values for the mole numbers of 0, H, OH, and 
H 2 0  were chosen to be outside the eight significant number range but nonzero. The 
present method requires  an initial estimate of the mass  fraction of only one species and 
a value of zero is chosen for the mass  fraction of atomic hydrogen, cl. The results of 
the calculations by the two methods are discussed in the next section. 

xo2 

RESULTS AND DISCUSSION 

The present method and the free-energy minimization technique for  computing the 
chemical composition of the aforementioned hydrogen-air mixture were programed in 
FORTRAN IV. A number of runs were made using these two programs on an IBM 7094 
computer at the Langley Research Center. These computations were made at a temper- 
ature of 4000' K, total density of 3 X g/cc, and a stoichiometric mixture of hydrogen 
in air 4 to 1 molar ratio of N2 t o  0 . The accuracy criterion for each method was 
adjusted so that the hydrogen atom mass  fraction would be calculated to  five-place accu- 
racy for both methods. The calculated results for these two methods, expressed in  t e rms  
of mass  fraction of each species, are listed in table I. The variations in the accuracy 
between the two methods are indicated by underscoring. 

( 2) 

TABLE I. - EQUILIBRIUM MASS FRACTIONS FOR SPECIES IN STOICHIOMETRIC, 

HYDROGEN-AIR MIXTURE FOR TWO COMPUTATIONAL METHODS 

= 4000° K and p = 3 x g/cd  

Species 

N2 
O2 

0 
H 
OH 

H2° 

Present method 

0.75675675 - 
.16356338 X 10-1 
.35859E X 

.17050637 

.21386473 X lo-' 

.27447= X 10-1 

.39606E X lom2 

- 

- 
- 

i F ree  -energy minimization technique 

0.75675599 
.16356= X 10-1 
.35859= X 

.17050748 

.21386453 X 10-1 

.27447716 X 10-1 

.39606200 X 

- 

- 
- 
- 
- 
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After it had been established that the two methods give the same numerical result  
within the same order  of accuracy, a number of computational runs were made to com- 
pare the speed of calculation for each method. The timing technique available for  this 
study permitted only a determination of the total running time for  an arbitrary number of 
cases.  This total time is composed of three parts: the input time tin, the actual com- 
putational time tc, and the output t ime tout. The computational time for N identical 
cases can be expressed as the product of N and the computation speed m 

tc = Nm 

and the total machine time is 

tT = tin + Nm + tout 

(34) 

(35) 

The quantity of interest in this study is m, the actual computational speed for each 
method; however, only tT is measured directly while N is an input value. One way 
of determining m is to  obtain values of tT over a range of N for  conditions such 
that Nm >> tout and Nm >> tin. In this study the program was allowed to run for  a 
given N without an output so that tout = 0. This procedure was followed after the two 
methods were shown to yield the same solution to  the same order of accuracy as indicated 
in table I.  The second condition, Nm >> tin, was achieved by measuring tT for a very 
large number of cases, N. 

The results for a series of timed machine calculations for both the present method 
The total machine and the free-energy minimization technique are presented in figure 1. 

running time tT is plotted as a function of the number of cases  run N for the free- 
energy minimization technique and for the present method. The previously mentioned 
initial set of mole numbers were used for the free-energy minimization technique which, 
in turn, required 12 iterations to find the solution. These results are represented by the 
uppermost curve where N ranges from 500 to 8000. It is seen that the slope of this 
curve has reached unity for N 2 6000; thus, in this region, the unit computational time is 

(Nm >> tin,tout = 0) 

The unit computational t ime m is, of course, independent of both tT and N so that 
the value of m determined in this manner is the time pe r  unit case for any number of 
cases  run. The value of m for the free-energy minimization technique requiring 
12 iterations is seen from figure 1 to be 252 msec/case. The deviation f rom unit slope 
for the lower values of N on this curve is due to  the increasing importance of the input 
time tin relative to Nm as N decreases.  
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Figure 1.- Comparison of running times for free-energy minimization technique and present method. 



The free-energy minimization technique was also timed for two additional runs for 
which the initial set of mole numbers were chosen to  be much closer to the ultimate 
values. The number of cases  run N for each of these two runs were 2000. One of these 
runs resulted in 5 iterations, while a run for a still more accurate initial set of mole 
numbers resulted in 4 iterations. A l l  the effect of tin 
has not been eliminated in these two runs so that the value of m for each was estimated 
by drawing in a line of unit slope displaced slightly below each data point to approximate 
the influence of tin. 
time of 156 msec/case and the run requiring 4 iterations gave 
mentioned that the runs that required only 4 o r  5 iterations resulted from more accurate 
initial sets of mole numbers. 
is probably a more practical basis for comparison. 

These two runs are also shown. 

The run requiring 5 iterations resulted in a unit computational 
m = 108. It should be 

The series of runs in which 12 iterations were required 

The present method of calculation was also timed for a series of runs f o r  the same 
computational conditions, that is, no output time (tout = 0) and over a range of N with 
N reaching large values. A series of runs were made for each of two different iteration 
schemes. 
500 5 N 5 8000. The scattering of the data points is due to  uncontrollable but slight vari- 
ations in tin from run to run. The total running time even at N = 8000 is still 
strongly influenced by the input time; therefore an accurate evaluation of m is not 
attempted. The value of m would, however, be less than 12 msec/case. An accurate 
value of m could be obtained by making computations fo r  still larger  values of N. 
This was not done because the halving-mode scheme is not one of the most timewise 
efficient iteration schemes. Instead, the Newton iteration scheme indicated by equa- 
tion (7) was used to complete the comparison. 

The resul ts  for a halving-mode* iteration scheme is shown for  the range 

The lowest curve in figure 1 shows the results for the present method using the 
Newton iteration scheme. 
equal to 0.001 and another series fo r  an initial value of zero. 
data, which again is due to  slight variations in 

A series of runs were carried out for  an initial value of c 1  
Within the scatter of the 

tin from run to  run, the two initial values 

*The halving-mode scheme makes use of equation (24) directly. Initial values of 

c1 
change in F ( c l )  is noted is then assumed to contain the desired root. The midpoint of 
this new and more limited interval is then computed and used to seek a more narrow 
interval by observing a sign change in F ( c l ) .  This procedure is repeated until the 
desired accuracy is achieved. If more than one root exists in the region 0 5 c1 5 1.0, 
the iteration scheme must account for this. There is, of course, only one root c1 that 
satisfies all the other equations whereas all values of 

equal to 0, 0.5, and 1.0 are used to evaluate F ( c l ) .  The interval in which a sign 

ci are real and positive. 
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of c1 produced the same curve. In these s e r i e s  of runs it w a s  necessary to make N 
as large as lo5 in order  to satisfy the condition that Nm >> tin. A slope of unity is 
essentially achieved when N = l o5  so that m = 2.52 msec/case. This unit computation 
time m for the present method using the Newton iteration scheme is two orders  of mag- 
nitude l e s s  than that for the free-energy minimization technique with 12 iterations. This 
comparison is for the same order  of accuracy in the composition for each method, as 
well as the same input quantities. 

The free-energy minimization technique and the other general methods for com- 
puting the equilibrium chemical composition of reacting mixtures can of course be used 
for a large range of reacting gas mixtures with a very large number of species and ele- 
ments. This generality offers a great advantage whereas the present method is limited 
to the species and elements (not their relative amounts) that have been chosen to develop 
the iteration equations. The advantage of the present method over the more general 
methods is realized when machine computation time is important, for example, when a 
finite-difference calculation network requires  a very large number of equilibrium com- 
position calculations. The computations necessary to determine the equilibrium chemical 
composition from point to point in certain flow field calculations often require excessive 
machine time so  that a se r i e s  of empirical curve fits of the equilibrium thermodynamic 
quantities a r e  used to achieve a more reasonable machine time. This representation of 
the thermodynamic quantities is limited to the specific gas  model for  which it was devel- 
oped. If the present method is used, account could be made for the point t o  point change 
in the elemental distribution due to diffusion by allowing the quantities b1,2,b2,3,. . . 
in equation (1) to be variables determined by the appropriate diffusion equations. 

It is noted that the present method offers considerable advantage over the more 

The comparison herein w a s  based on a 
general method with regard to machine computation time. This advantage has been 
achieved at the expense of loss of generality. 
hydrogen-air gas  model which represents  a system of intermediate complexity. Other 
systems of s imilar  complexity could likewise be formulated and used in conjunction with 
the present'method. It is possible to apply this technique to more complex systems. It 
does not seem practical, however, to extend this present method to very complex systems 
because the algebraic manipulation becomes overwhelmingly tedious as the number of 
species and/or elements in the system become very large. For  this reason, the practical 
application of the present method is probably limited to systems of intermediate com- 
plexity like the system studied o r  perhaps only somewhat more complex. 
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CONCLUDING REMARKS 

A method for  computing the chemical composition of reacting gas mixtures has 
been presented that shows considerable advantage with respect to machine computation 
time. For the particular comparison considered herein, the unit computational speed for 
this method is two o rde r s  of magnitude faster than the more general and most commonly 
used computation schemes. This advantage is achieved by reducing the system of equa- 
tions down to one equation containing a single unlmown. 
involves much tedious algebra, but the procedure is believed to be worthwhile when com- 
putational time must be kept short  and when a large number of computations are required 
for the Same chemical system. 
putations requires that a new set of equations be developed for  each chemical system that 
contains a different set of chemical species. 
the system can be treated as variable input. 

This reduction to one equation 

The application of the present method to machine com- 

The relative total m a s s  of each element in 

The great  advantage in computational speed noted was based on a comparison 
wherein the chemical system was of intermediate complexity. 
ical systems of greater complexity would also show this advantage in computational 
speed, but the effort required to  reduce the system of equations to the necessary single 
expression may be the limiting factor for very complex systems. 

It is believed that chem- 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., March 16, 1966. 
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APPENDIX 

REDUCTION OF WORKING EQUATIONS TO A SINGLE EQUATION 

CONTAINING A SINGLE UNKNOWN 

The substitution of the J equilibrium expressions indicated by equation (3) into 
the K conservation of m a s s  expressions indicated by equations (1) and (2) yields 
K equations which contain only K unknown mass-fraction variables. These K equa- 
tions can be written in  general form as 

(n = 1,2,. . .K) (Al) 

where c, denotes the mass  fraction of a particular species which is one of the K 
mass-fraction variables in these K equations, Mn is the highest order of c, in the 
nth equation, and A is a polynomial function of the remaining K - 1 mass-  
fraction variables from which is excluded, as well as a function of the known quan- 
tities T ~ ,  ai,k7 vi,j, vi,j, and $,k+l. 

m,n 
c, 

Equation (Al) can be divided through by either A0+ o r  A to give either 
M,,n 

or 

(n = 1,2,. . .K) 

Consider equation (A2) first with n = 1 and then with n = 2 so that 

*m71 m ca! = 0 
M1 

' +  1 Ao,1 
m= 1 

and 
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m= 1 

If the choice of equations with n =. 1 and n = 2 is made so that M1 2 M2, subtraction 
of equation (A5) f rom equation (A4) yields 

o r  

is zero  Note that if the mth power on ca does not exist in the nth equation, then A 
for that particular case. 

m,n 

Consider equation (A3) first with n = 1 and then with n = 2 so that 

and 

If M1 = M2, subtraction of equation (A9) f rom equation (A8) yields 

m=O 
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1 r m ,  lAM2,2 - Am,2AM1, 1) c m = 0  a 
m= 0 

For the case where M1 = M2, equations (A") and ( A l l )  represent two independent 
equations in which the highest order  of c, is M1 - 1 ra ther  than M1 as it was in 
equation (Al) for n = 1 and n = 2. However, if M1 > Ma, equation (A7) is still 
obtained, but instead of using equation (Al l ) ,  equation (Al)  with n = 2 is used unchanged, 

Am,2c,m = 0 
m= 0 

For this case where M1 > M2, equations (A?) and (A12) represent two independent equa- 
tions in which the highest order  of c, is M1 - l. In either case, the coefficients in 
equation (A") and in equation ( A l l )  or (A12) are polynomials which can be redefined for  
convenience so that 

m: 0 

and 

2 Bm,2c,m = 0 
m= 0 

The procedure to this point is now repeated by starting with equation (Al)  but with 
a different pair, for example, n = 3 and n = 4. If K is odd, one of the n original 
equations indicated by equation (Al)  will be used twice so that only one independent equa- 
tion is developed from that pair. 
which includes equations (A13) and (A14) as special cases, can be written as 

A general expression for these reduced equations, 

Mn- 1 
m c Bm,f, = 0 

m= 0 
(n = 1,2,. . .K) (A15) 
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Because this equation is of the same form as equation (Al), it follows that the order  of 
these K equations can ultimately be reduced to first order  with respect to car' that is, 

(A16) Ql,nco! + Q0,n = O (n = 1,2,. . .K) 

where Q1 , n 
variables excluding ca. 

The variable co! can be eliminated from equation (A16) to give the following 
K - 1 equations which do not contain car' 

and Qo,n are involved polynomial functions of K - 1 mass-fraction 

(n = 1,2,. . .K-1) QO,nQl,n+l - Ql,nQO,n+l= O 

Equation (A17) can now be written in the form 

wherein c 
highest o rder  of c for the nth equation, and A '  
K - 2 mass-fraction variables excluding c as well as functions of the known quantities 

is the m a s s  fraction of one of the remaining K - 1 species, Mi is the 
are polynomial functions of 

P 
P m7n 

p' 
'j7 ai,k9 V .  i,j' 'f,j, and bk,k+l* 

Equation (A18) represents  K - 1 equations which contain K - 1 mass-fraction 
variables. 
K - 1 equations and unknowns by starting with equation (Al) which represents  K equa- 
tions and unknowns can be used as many t imes as is necessary to obtain a single poly- 
nomial expression involving only one mass-fraction variable, for example, 

The reduction procedure used to obtain equation (A18) which represents  

cl, 

L 
d l c t  = 0 

L 
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